

ABOUT TTM

TTM Technologies, Inc. is a leading global manufacturer of technology solutions including engineered systems, RF components and RF microwave/microelectronic assemblies and quick-turn and technologically advanced PCBs. TTM stands for time-to-market, representing how TTM's time-critical, one-stop manufacturing services enable customers to shorten the time required to develop new products and bring them to market. Additional information can be found at www.ttm.com.

FOLLOW US f in 🤏 🕨 🔘 🗓

#TTM #TTMTECH #INSPIRINGINNOVATION

OUR WEBSITE WWW.TTM.COM

INNOVATIVE SOLUTIONS FOR DIVERSE MARKETS

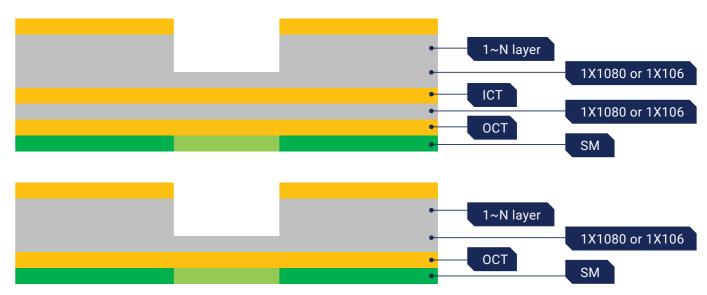
One-Time Flex for Easy Installation

ENABLING THREE-DIMENSIONAL DESIGN

Overview

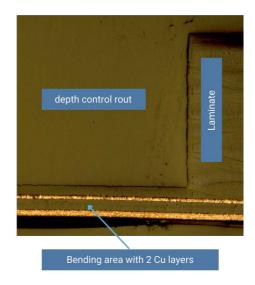
- FR-4 material processing parameters
- The material in 'bend-area' is reduced in thickness by depth controlled routing
- Suitable for flex to install (1-time bend) applications only (no dynamic flex)
- No expensive flex materials and process-flow required
- One PCB replacing two PCBs + interconnects (connectors, solder-joints)
- · PCB is mechanically fixed after bending
- Flexible soldermask applied in bending area

TTM Technologies ("TTM") offers semi-flex circuit boards manufactured with conventional rigid FR-4 base materials. These boards are suited for one-time flex-to-install applications. The technology can be used for double-sided and multilayer boards. Because only standard materials and processing are used, this technology offers a low-cost alternative for applications with flexible or bendable areas in a printed circuit board ("PCB"). A semi-flex board most often replaces two PCBs and the required connectors and cables or allows a three-dimensional design and placement of the PCBs in a device.

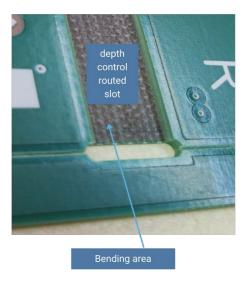

The flexible segment in a semi-flex PCB is generated by controlled depth milling of the PCB in the required area. TTM's newest routing machines with z-Axis technology and integrated measuring and mapping functions is critical to the consistent and high-quality fabrication of semi-flex.

The flexible area is covered with a flexible soldermask. The materials and glass style are chosen so that the bending can be done without an impact on the reliability of the circuit board.

Reliability testing shows good results and the ability to have multiple bends without damage to the bending area. TTM recommends, in general, not more than five cycles. Details are to be defined based on the stackup.


Assembly and Bending Recommendations

TTM recommends a board or multi-board bar or frame to stabilize the bending area in assembly. The assembly process can be standard because no additional tempering, preparation, or handling is necessary. Installation of semi-flex circuits should be done with a bending tool to guarantee that the minimum bending radius is not violated.



Typical stack-up for semi-flex

cross-section view

top side view

TTM Technologies

LONG-TERM RELIABILITY TESTING

CAF TESTING CONDITION Preconditioning 3X lead free IR + 100VDC/85C/85RH, 1000Hrs

EVALUATION CRITERIA

≥20MΩ

BENDING CYCLE	TRACE - TRACE DESIGN				LAYER TO LAYER
BENDING CYCLE	5/5 MIL	6/6 MIL	8/8 MIL	12/12 MIL	LATER TO LATER
0 cycle	Pass	Pass	Pass	Pass	Pass
3 cycles	Pass	Pass	Pass	Pass	Pass
5 cycles	Pass	Pass	Pass	Pass	Pass
10 cycles	Pass	Pass	Pass	Pass	Pass

THERMAL CYCLING TESTING CONDITION

Preconditioning 3X lead free IR + TC4.2 (-40C~125C, 1000cycles)

EVALUATION CRITERIA

≤5% rising of resistance referring to reference resistance value

BENDING CYCLE	TRACE - TRACE DESIGN				
BENDING CYCLE	5/5 MIL	6/6 MIL	8/8 MIL	12/12 MIL	
0 cycle	Pass	Pass	Pass	Pass	
3 cycles	Pass	Pass	Pass	Pass	
5 cycles	Pass	Pass	Pass	Pass	
10 cycles	Pass	Pass	Pass	Pass	

DESIGN GUIDELINES FOR SEMI-FLEX PCB

Material (reference)	IT-158, Autolad1, SB170G, EM 825
Methodology	Z-Axis Routing / ZAR
Depth control routing tolerance	+/-75 μm (3mil)
Bending Layer	1 or 2
Bending Cycle	Max. 5 (depending on design)
Bending Radius	Min. 22T (T=the remaining thickness)
Bending Area Width (BAW)	Min. 0.02 θR (θ=Bending Angle)
Cu thickness on bending layers	HOZ,1 OZ, 20Z, 30Z
Trace width and spacing on the bending layers	Min. 0.2mm for HOZ, 0.25mm for 10Z
Glass type	Fine glass e.g. 106, 1080

MINIMUM THICKNESS

A minimum bending radius (R) needs to be taken into account because semi-flex is based on glass-reinforced rigid base material. The bending radius mainly depends on the 'Remaining Thickness' (RT) in the bend-area.

A guideline to calculate:

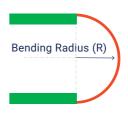
The minimum Radius (R): R = 22 * RT

The Bend Area Width (BAW) depends on the

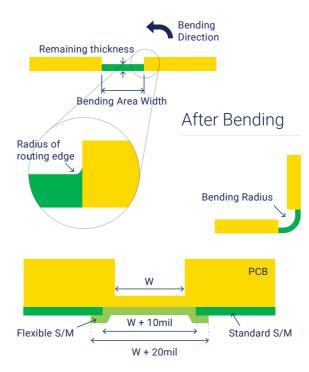
Bending Angle (α) and Radius (R): BAW = (0.017 * α * R)

Example based on Remaining Thickness (RT) = 0.25mm;

R = 22 * 0.25 = 5.5mm

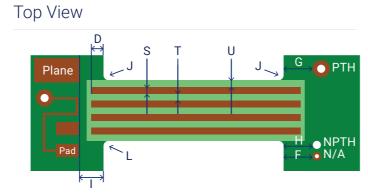

BAW = 0.017 * 90 * 5.5 = 8.4mm for 90° Bending Angle

BAW = 0.017 * 180 * 5.5 = 16.83mm for 180° Bending Angle


90° Bending Angle

180° Bending Angle

Before Bending

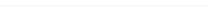


4

Semi-Flex (ZAR) Design Rules

Side View Copper Solder Mask Flexible Solder Mask FR4

DESCRIPTION	VALUE	UNIT	
Minimum nominal thickness of bending area for one copper layer	0.20	mm	А
Minimum nominal thickness of bending area for two copper layers (NOT Preferred)	0.25	mm	Α
Minimum flexible solder mask overlap onto solder mask	0.50	mm	В
Minimum solder mask clearance from semi flex area	0.15	mm	С
Minimum length of copper extending beyond the semi flex area (non functinal tracks)	1.00	mm	D
Minimum rigid area copper clearance from semi flx area	0.50	mm	Е
Minimum microvia pad clearance from semi flex area	0.50	mm	F
Minimum PTH pad clearance from semi flex area	0.50	mm	G
Minimum NPTH clearance from semi flex area	0.50	mm	Н
Minimum component pads clearance from semi flex area	1.00	mm	I
Minimum radii in the area of transition from rigid to semi flex area	N/A	mm	J
Minimum routing depth	N/A	mm	K
Minimum routing diameter	N/A	mm	L
Minimum track width (18µm)	0.20	mm	S
Minimum track spacing (18μm)	0.20	mm	Т
Minimum track width (35μm)	0.25	mm	S
Minimum track spacing (35μm)	0.25	mm	Т
Minimum track spacing to Semi Flex area side edge	0.50	mm	U


For more information on Semi-flex technologies, please speak with your TTM Sales representative or contact us by:

 ${\bf Corporate Marketing@ttm.com}$

TTM GLOBAL LOCATIONS

CORPORATE LOCATIONS
/REGIONAL OFFICES

LOCATION	PHONE
NORTH AMERICA	
Global Headquarters (HQ)	+1.714.327.3000
TTM St. Louis (STL)	+1.314.727.2087
ASIA PACIFIC	
Commercial Sector Headquarters (CS HQ)	+852.2660.3100
	+852.2272.2222
TTM Taiwan (TW)	+886.3.280.7577
TTM Japan (JP)	+81.050.5306.2122
	050.5306.2123 (Japan Domestic Only)
EMEA	
TTM Germany (DE)	+49.171.285.4994
TTM India (IN)	+91.9980.047.215

COMMERCIAL FACILITIES

	7711770010171210	
LOCATION	PHONE	
NORTH AMERICA		
TTM Chippewa Falls (CF)	+1.715.720.5000	
TTM Logan (LG)	+1.435.753.4700	
TTM San Jose (SJ)	+1.408.280.0422	
TTM Syracuse (SYR-W)	+1.315.233.5510	
TTM Toronto (TOR)	+1.416.208.2100	
ASIA PACIFIC		
TTM Dongguan (DMC)	+86.769.8622.8000	
TTM Guangzhou (GZ)	+86.20.6287.8777	
TTM Huiyang (HY)	+86.752.261.7111	
TTM Hong Kong (OPCM)	+852.2660.3100	
TTM Shanghai (SH)	+86.21.6495.4551	
TTM Suzhou (SUZ)	+86.512.6274.9282	
TTM Zhongshan (ZS) *	+86.760.2226.9805	7

^{*} The specific facility with Semi-Flex technology

